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Abstract:  In earthwork volume computations the Prismoidal and End-Area formulae are often used.  The End-Area 
formula is simpler and requires less field measurements so it is often the formula of choice.  But, for certain solids, it 
overestimates the volume where the Prismoidal formula would, if used, give the correct volume.  In such cases, End-
Area volumes can be corrected by applying Prismoidal Corrections, and this is a common practice.  This paper aims to 
show that this practice is only correct for certain solids – a fact not often stated in engineering surveying textbooks. 

 
 

Introduction 

In earthwork volume computations, for example road 
construction, railroad embankments and cuttings, dam 
construction, etc., the design is set-out in the field, 
cross-section information obtained at regular intervals 
perpendicular to a centre-line and volumes computed 
from the cross-section areas and the interval distances. 

A general assumption about the solid between the cross-
sections is that it is a prismoid – a solid having parallel 
plane end-faces, not necessarily similar nor having the 
same number of edges, and with plane side-faces 
extending the full length of the solid (see Figure 1).  
Prismoids may be decomposed into the basic geometric 
solids; prisms, pyramids and wedges, and the volume of 
a prismoid is obtained from the Prismoidal formula 

 ( 1 4
6P m
LV A A A= + + )2  (1) 

1 2,A A  are the areas of the parallel end-faces, mA  is the 
area of the mid-section and L is the perpendicular 
distance between the end-faces.  A derivation of this 
formula is given below. 

A simple formula for estimating volumes of solids is the 
End-Area formula 

 ( 1 22EA
LV A A= + )  (2) 

1 2,A A  are the areas of the parallel end-faces and L is 
the perpendicular distance between the end-faces.   
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If the solid is a prismoid composed of prisms and 
wedges, the End-Area formula will give the correct 
volume, i.e., a volume as would be obtained using the 
Prismoidal formula.  But, as will be demonstrated later, 
if the prismoid is composed of prisms, wedges and 
pyramids; wedges and pyramids; or pyramids only, the 
End-Area formula may under estimate or over estimate 
the correct volume.  This under or over estimation is 
due to the presence of pyramids. 

In earthwork volume computations for road 
construction, a common practice is to compute volumes 
(assuming solid prismoids) using the End-Area formula, 
and realizing that these solids may contain prisms, 
wedges and pyramids, apply Prismoidal Corrections to 
obtain volumes that would have been obtained if the 
Prismoidal formula had been used.  This practice is 
attractive as it requires a minimum of field 
measurements, since no mid-section areas are required, 
and the usual formula for the Prismoidal Correction is 
simple.  But as will be demonstrated, this practice is 
only correct for certain types of solid sections.  And if 
the actual section differs from the assumed section then 
the Prismoidal Correction will be incorrect.  This can be 
a problem if practitioners are using surveying 
engineering software that applies Prismoidal 
Corrections to End-Area volumes and they enter field 
information related to solids that are not the type 
applicable to the particular Prismoidal Correction. 

In addition to the discussion of the appropriateness or 
otherwise of Prismoidal Corrections, this paper also 
provides some information on the use of the Prismoidal 
formula when the solids may contain curved surfaces. 

The Prismoid and Newton's proof of the Prismoidal 
Formula 

Figure 1 shows a prismoid.  1 2,A A  are the areas of the 
end-faces, mA  is the area of the mid-section and L is the 
perpendicular distance between end-faces.  Note that 
the mid-section is parallel with the end-faces but its area 
is not necessarily the mean of 1A  and 2A .  The volume 
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is given by the Prismoidal formula shown above as 
equation (1). 
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Figure 1:  A prismoid 

Our definition of a prismoid, which is common in 
surveying texts, is different from that used by 
mathematicians, who define our prismoid as a 
prismatoid (Weisstein 2008).   

The Prismoidal formula is a computational formula 
dating from antiquity and appears on one of the oldest 
documents in existence, a papyrus scroll (about 544 
centimetres long and 8 centimetres wide), written in 
Egypt around 1890BC.  This papyrus scroll commonly 
known as the Moscow Papyrus – or Golenischev 
Papyrus after the Russian V. S. Golenischev who 
purchased it in Egypt in 1893 and sold it to the Moscow 
Museum of Fine Arts, where it still resides – contains 
25 mathematical problems with solutions.  The 14th 
problem asks for the volume of a truncated pyramid 
(frustum) and its stated solution can be expressed in the 
common form we know as the Prismoidal formula. 

Interesting historical information regarding the 
Prismoidal formula in the Moscow Papyrus can be 
found on the Internet e.g., The Prismoidal Formula 
(Math Pages 2008) and Moscow Mathematical Papyrus 
(Wikipedia 2008).  For those interested in the history of 
mathematics, Newman (1956) has a wonderful 
description of the Rhind Papyrus; another ancient 
Egyptian scroll describing fundamental mathematical 
principles. 

The verification of the Prismoidal formula set out 
below, was enunciated by Sir Isaac Newton (1642-
1726) and can be found in Clark (1957).  It is 
interesting to note that Newton held the view – 
outlandish at the time – that he and others were just re-
discovering the knowledge of the ancient Egyptians.   

In Figure 1, let PQRS represent the section of area mA  
midway between the end-faces ABCD and EFG and 
parallel to them.  Take any point O in the plane of the 
mid-section and join O to the vertices of both end-faces.  
The prismoid is thus divided into a number of pyramids, 
each having its apex at O, and the bases of these 

pyramids form the end- and side-faces of the prismoid.   
The volume of the two pyramids whose bases are the 
end-faces are, respectively 

 1
13 2 6

A L L A× =    and   2
23 2 6

A L L A× =  

To express the volume of the pyramids based on the 
side-faces of the prismoid, consider, say, pyramid 
OADGE, and let the perpendicular distance of O from 
SP be h, then the volume of the pyramid OADGE is 

 ( )1 1 2 area( )  
3 3 3

LADGE h PS L h OPS× = × × = ×Δ  

where OPSΔ  denotes the area of triangle OPS. 

In the same manner, the volume of pyramid OCDGF = 
2  
3
L ORS×Δ  and so on for the others, so that the 

volume of the prismoid is given by 

 

( )

( )

1 2

1 2

1 2

6 6
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3

2
6 6 3

4
6

m

m

L LV A A

L OPS ORS OQR OPQ

L L LA A A

L A A A

= +

+ Δ + Δ + Δ + Δ

= + +

= + +  (3) 

Shepherd (1983) shows how the Prismoidal formula can 
be applied to the solids: cone, sphere, frustum of a cone, 
and the wedge to yield the formula for the volume of 
each solid.  Following his examples it can also be 
applied to the ellipsoid, pyramid and frustum of a 
pyramid. 

Estimation problems using the End-Area formula 

Figures 2, 3 and 4 show prismoids that are composed 
of, respectively; a prism and a wedge; a prism, a wedge 
and a pyramid; and two pyramids.  In Figure 5, the 
prismoid is the result of removing four pyramids from a 
prism. 

The volumes computed using the Prismoidal formula 
and shown in Table 1 are correct and can be verified by 
calculating the volumes of the composite prisms, 
wedges and pyramids; or the volume of an enclosing 
prism minus the volumes of pyramids and wedges. 

In each of these figures, the prismoid has a length 
10 mL =  and a rectangular base 2 m × 10 m with end-

faces perpendicular to the base.  The areas of the end-
faces and mid-sections are easily obtained and volumes 
computed using equations (1) and (2), the Prismoidal 
and End-Area formulas respectively. 
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Areas m2 Volumes m3 Prismoid 
1A  mA  2A  PV  EAV  

Figure 2 6 5.0 4 50 50 
Figure 3 8 6.5 4 1

363  60 

Figure 4 2 2.5 4 2
326  30 

Figure 5 3 3.0 2 1
328  25 

 
Table 1:  Volumes of prismoids 

For example in Figure 3 the volumes of the prism, 
wedge and pyramid are 

3
PRISM

3
WEDGE

31
PYRAMID 3

end area  perpendicular height 40 m
sum of parallel edges 

1  base width 10 m
6

 perpendicular height

end area 1 13 m
 perpendicular height3

V

V

V

= × =

⎛ ⎞
⎜ ⎟= × =⎜ ⎟
⎜ ⎟×⎝ ⎠
⎛ ⎞

= =⎜ ⎟×⎝ ⎠
 

 

and the volume of the prismoid is 

 31
PRISMOID PRISM WEDGE PYRAMID 363  mV V V V= + + =  
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Figure 2:  Prism+wedge 
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Figure 3:  Prism+wedge+pyramid 

2

2

A1

A2

Am

10

 
Figure 4:  Pyramids 
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Figure 5:  Prism–pyramids 

We may infer, from the examples presented, that 
volumes computed by the End-Area formula are 
sometimes equal to, sometimes less than and sometimes 
greater than volumes computed using the Prismoidal 
formula.  Equality occurs if, and only if, the mid-section 
area is the arithmetic mean of the end-areas, i.e., if 

( )1
1 22mA A A= +  and in such cases, the prismoid is 

composed of prisms or prisms and wedges.   

Hence, it is common to say that the volume computed 
using the End-Area formula is an estimate of the true 
volume. 

Some surveying texts (e.g., Schofield 2002, Elfick, 
Fryer, Brinker & Wolf 1994) ascribe the difference 
between the Prismoidal and End-Area formulas to the 
presence of pyramids, which is true; and note that 
applying the End-Area formula to the computation of 
the volume of a pyramid produces a result that is larger 
than the correct value.  This is also true; and these facts 
are used as justification for statements like:  

The End-Area formula gives results that 
are generally larger than true volumes. 

Such statements could be misleading if the word 
generally was taken to mean in all cases.  As can be 
seen in the volume computations in Table 1, the End-
Area formula underestimates the true volume of Figures 
3 and 5; correctly estimates the volume of Figure 2; and 
overestimates the volume of Figure 4. 
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The Prismoidal Correction (PC) 

In earthwork volume computations in engineering 
surveying, it is common practice to compute volumes 
using the End-Area formula and then apply a correction 
to obtain a volume that would have been obtained if the 
Prismoidal formula – requiring additional field 
measurements for mid-section areas – was used.  This 
leads to the definition of the Prismoidal Correction 
(PC) (Oliver & Clendinning 1978) 

 

( ) ( )

( )

( )

1 2 1

1 2

1 2

PC  = 

4
6 2

2 4 2
6

2
3

P EA

m

m

m

V V
L L

2A A A A A

L A A A

L A A A

−

= + + − +

= − − +

= − − +  (4) 

If we compute the Prismoidal Correction (PC) given by 
equation (4) for each prismoid shown in Figures 2, 3, 4 
and 5 using the values for 1, ,m 2A A A  in Table 1 and 

 we obtain 0, 10 mL = 33  m1
3 , 31

33  m−  and 31
33  m .  

And, as expected, these are the differences between the 
two volumes (by Prismoidal formula and by End-Area 
formula) shown in Table 1. 

But, common practice, as we have defined it, means 
mid-section areas are unknown, and hence a formula for 
the PC must be developed that is a function of end-areas 
only.   

Prismoidal Correction for Three-Level road 
sections 
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Figure 6:  Cross-sectional view of a road in cut 

Figure 6 is a cross-sectional view of a road in a cutting 
and Figure 7 shows typical cross-sections where the 
Three-Level Section (a) can be considered as the 
general type. 
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Figure 7: Three-Level, Two-Level and Level sections 

The volume of the solid of length L can be computed 
once the end-section areas are known and these can be 
obtained from the basic design information; formation 
breadth b; side slopes of the cutting s horizontal to 1 
vertical; transverse natural surface slopes, ,L Rn n  
horizontal to 1 vertical; depth of cut c at the formation 
centre-line; side-heights ,L Rh h  and side-widths ,L Rw w  
where the subscripts L and R denote left and right. 

Following Oliver & Clendinning (1978), the cross 
section areas can be obtained by considering the Three-
Level Section (a) of Figure 7.  Extending the side slopes 
to meet at O, we have, in the triangle OLM 

 (1
2 L L L Lb sh w n h c)+ = = −  (5) 

giving 
1
2L

L
L

n c b
h

n s
+

=
−

 (6) 

and substituting back into equation (5) gives 
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2

L
L

L

n s bw c
n s s

⎛= +⎜− ⎝ ⎠
⎞
⎟  (7) 

Similarly, with the right-hand triangle OMR we obtain 

 
1
2R

R
R

n c b
h

n s
−

=
+

 (8) 

and 
2

R
R

R

n s bw c
n s s

⎛= +⎜+ ⎝ ⎠
⎞
⎟  (9) 

For the Two-Level Section (b) and the Level Section (c) 
appropriate simplifications can be made to equations (6) 
to (9) and these are summarized in Tables 2 and 3.  
These formulae are the same for embankments where it 
is only necessary to invert the diagrams in Figures 6 and 
7. 

From the Three-Level Section (a) of Figure 7, the area 
of the section is the area of the two triangles OLM and 
OMR less the constructed isosceles triangle OPQ.  
Hence, with L RW w w= + , the cross section area is 

 

2
1 1
2 2

2
1
2

2 2

2 4

L R
b bA w c w c

4
b

s s
b bW c
s s

⎛ ⎞ ⎛ ⎞= + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

s
 (10) 

 

Section side heights ,L Rh h  

Three-Level 
1 1
2 2L R

L R
L R

n c b n c b
h h

n s n s
+ −

= =
− +

 

Two-Level 
L Rn n= = n  

1 1
2 2

L R

nc b nc b
h h

n s n s
+ −

= =
− +

 

Level L Rh h= = c  

Table 2: Side heights for sections 

 
Section side widths ,L Rw w  

Three-Level 
2

2

L
L

L

R
R

R

n s bw c
n s s

n s bw c
n s s

⎛ ⎞= +⎜ ⎟− ⎝ ⎠

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠

 

Two-Level 
L Rn n= = n  

2

2

L

R

ns bw c
n s s

ns bw c
n s s

⎛ ⎞= +⎜ ⎟− ⎝ ⎠
⎛ ⎞= +⎜ ⎟+ ⎝ ⎠

 

Level 1
2L Rw w b sc= = +  

Table 3: Side widths for sections 

Using equations (4) and (10) with section widths  
and 

1 2,W W

( )1
1 22mW W W= + ; depths of cut  and 1,c 2c

( )1
1 22mc c c= +  we obtain the Prismoidal Correction 

(PC) as 

 ( )(1 2 1 212
LPC W W c c= − − − )  (11) 

Prismoidal Correction for Side-Hill road 
sections 
Figure 8 is a cross-sectional view of a road partly in cut 
and partly in fill and Figure 9 shows typical Side-Hill 
sections.  The volume of the solid of length L can be 
computed once the end-section areas of cut and fill are 
known. 
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Figure 8:  Cross-sectional view of road partly in cut and 
partly in fill 

Using similar methods as before but with different side 
slopes ,L Rs s

,

 horizontal to 1 vertical; a single transverse 
slope of n horizontal to 1 vertical and side-heights 
denoted L Rdd .  For the Side-Hill Section (a) of Figure 
9 where c is in cut, we obtain, for the left-hand side of 
the section 

 
1
2

L
L

b nc
d

n s
+

=
−

 (12) 

 
2

L
L

L L

ns bw
n s s

⎛ ⎞
c= +⎜− ⎝ ⎠
⎟  (13) 

Similarly, on the right-hand side we obtain 
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1
2

R
R

b nc
d

n s
−

=
−

 (14) 

 
2

R
R

R R

ns bw
n s s

⎛
= ⎜− ⎝ ⎠

c
⎞

− ⎟  (15) 

For Side-Hill Sections where c is in fill appropriate 
changes can be made to equations (12) to (15) and these 
are summarized in Tables 4 and 5. 
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Figure 9:  Side-Hill sections 

 

Section side heights ,L Rh h  

Side-Hill 
c in cut 

1 1
2 2

L R
L R

b nc b nc
d d

n s n s
+ −

= =
− −

 

Side-Hill 
c in cut 

1 1
2 2

L R
L R

b nc b nc
d d

n s n s
− +

= =
− −

 

Table 4: Side heights for Side-Hill sections 

 
Section side widths ,L Rw w  

Side-Hill 
c in cut 

2

2

L
L

L L

R
R

R R

ns bw c
n s s

ns bw c
n s s

⎛ ⎞
= +⎜ ⎟− ⎝ ⎠

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 

Side-Hill 
c in cut 

2

2

L
L

L L

R
R

R R

ns bw c
n s s

ns bw c
n s s

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

⎛ ⎞
= +⎜ ⎟− ⎝ ⎠

 

Table 5: Side widths for Side-Hill sections 

With x nc=  denoting a distance from the centre-line to 
the no-cut/no-fill line (the point where the natural 
surface intercepts the road formation), the areas in cut 
and fill for the Side-Hill Section (a) of Figure 10 where 
c is in cut are 

 
( )
(

1 1
2 2

1 1
2 2

CUT L

FILL R )
A d b x

A d b x

= +

= −
 (16) 

Using equations (4) and (16) with 1 2,x x

2

 denoting 
distances from the centre-line to the no-cut/no-fill line 
at the end-sections and 1 1 2, , ,L R Ld d d Rd  denoting left 
and right side-heights at the end-sections we obtain the 
Prismoidal Corrections for cut and fill where c is in cut 

 
( ) ( )

( )(

1 2 1 2

1 2 1 2

12

12

CUT L L

FILL R R

LPC d d x x

LPC d d x x

= − − −

= − − )
 (17) 

Where c is in fill, the areas of cut and fill are 

 
( )
(

* 1 1
2 2

* 1 1
2 2

CUT L

FILL R )
A d b x

A d b x

= −

= +
 (18) 

leading to another pair of Prismoidal Corrections where 
c is in fill 

 
( )( )

( )(

*
1 2 1 2

*
1 2 1 2

12

12

CUT L L

FILL R R

LPC d d x x

LPC d d x x

= − −

= − − − )
 (19) 
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Summary of Prismoidal Corrections 

For volumes V estimated by the End-Area formula with 
Prismoidal Correction (PC) 

 ( )1 22
LV A A P= + + C  (20) 

the Prismoidal Corrections, applicable to road cross-
sections can be summarised as 

 
Cross-section Prismoidal Correction (PC) 

Three-Level 

Two-Level 

Level 

   ( )(1 2 1 212
LPC W W c c= − − − )  

Side-Hill 
c in cut 

( )( )

( )(

1 2 1 2

1 2 1 2

12

12

CUT L L

FILL R R

LPC d d x x

LPC d d x x

= − − −

= − − )
 

Side-Hill 
c in fill 

( )( )

( )(

*
1 2 1 2

*
1 2 1 2

12

12

CUT L L

FILL R R

LPC d d x x

LPC d d x x

= − −

= − − − )
 

 

Table 6:  Prismoidal Corrections for road cross-sections 

We can see here that none of these Prismoidal 
Corrections is appropriate for any of the prismoids in 
Figures 2, 3, 4 and 5. 

The Prismoidal formula and curved surfaces 

It is interesting to note that the Prismoidal formula can 
be applied to certain solids of revolution, e.g., sphere 
and ellipsoid to obtain formula for their volumes.  And 
Simpson (1743) extended his rule for the computation 
of areas under a parabolic curve (his rule was originally 
an invention of Sir Isaac Newton) to develop a formula 
for the volume of frustums generated by rotating conic 
sections about their axes.  We would recognise his 
formula as equation (1).  But, applying the Prismoidal 
formula to other solids of revolution does not 
necessarily give the correct volume. 

Figure 10 shows a barrel formed from the middle 
frustum of a spindle.  It is either a parabolic barrel if it 
is the middle frustum of a parabolic spindle generated 
by the rotation of a parabola ECF about the line AB; or 
a circular barrel if it is the middle frustum of a circular 
spindle formed by the rotation of the segment of a circle 
ACB about its chord AB. 
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Figure 10:  Barrel formed from middle frustum of a 

spindle 

In the case of a parabolic barrel the formula for the 
volume is obtained by integration as 

 

( )

(

2

0

2 2

2

2

2 8 4 3
15

8 4 3
15

l

V y dx

l b ab a

L b ab a

π

π

π

=

= + +

= + +

∫

)2  (21) 

where 2L l=  and where the equation of the parabola 
ECF is  

 2
2

b ay b x
l
−

= −    for    (22) l x l− ≤ ≤

Applying the Prismoidal formula gives the volume of 
the parabolic barrel as 

 ( ) (2 2 2 22 10
3 15P
L LV b a bπ π

= + = + )5a

erence

 (23) 

And using equations (21) and (23) the diff  
PV V−  is 

 

( ) ( )

( )

2 2 2

2

8 4 3 10 5
15 15

2
15

P
L LV V b ab a b a

L b a

π π

π

− = + + − +

= − −

2

(24) 

So PV V<  since  or the volume computed by the 
Prismoidal formula is an overestimation of the true 
volume of the parabolic barrel. 

b a>

For the case of a circular barrel, the equation of the 
circle passing through the three points ( ),E l a− , 

( )0,C b  and ( ),F l a  of Figure 10 is 

 ( )2 2 1U x y Wy+ + =  (25) 
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where 
( ) ( )

2 2 2

2 2 2 2
 andb a a l bU W

b a l ab b a l ab
−

= =
+ − + −

+ − . 

Completing the square in y in equation (25), re-
arranging and taking the positive square-root gives 

 2 2

2
Wy P x
U

= − −    for    (26) l x l− ≤ ≤

and so 2 2 2Wy Q x P x
U

= − − − 2  (27) 

where 
2

2 1
2
WP

U U
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 and 2 12Q P
U

= − . 

The volume of the barrel formed by rotating the circular 
arc ECF about the line AB is then 

2

0

2 2 2

0

2
3 2 2

2 2
2 2

2

2

12 a
3 2 2

4 arcsi
12 4 2

l

l

V y dx

WQ x P x dx
U

Wl WP lQl l P l
U U

L W WP LL Q P L
U LU

π

π

π

π

=

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − − − −⎜ ⎟
⎝

∫

∫

rcsin

n

P

P ⎠

erence

 (28) 

And using equations (23) and (28) the diff  
PV V−  is 

2
2 2

2 2

4
12 4

2arcsin
2 3

P
L WV V L P L

U

WP L b a Q
LU P

π
⎛

− = − + −⎜
⎝

2 ⎞+
+ + ⎟−

⎠
 (29) 

Assuming  and b a> 2 2l b a> −  ensures  that 

0W
U

> ,  and ; and it can be shown 

that 

0>P 2 24P L− > 0

2

arcsin
2PV V− >

WP L
U P

π
− .  But 

2

0WPπ
>

2

arcsin
2
L

U P
0<

 so it cannot be concluded that 

 nor that . PV V− 0PV V− >

Note that if , the spindle from which the 
barrel is formed is a sphere of radius b; and 

2 2l b a= −
0PV V− = , 

i.e., the volume computed by the Prismoidal formula 
gives the exact true volume V. 

How can these estimation errors be explained?  
Consider the volume of the frustum of the paraboloid 
AEFB of Figure 11 where it is assumed that the curve 
AOB is a parabola having the general equation 

 y cx=  (30) 

where c is a constant.   

C

y

x

A

B

O D

E

F

 
Figure 11:  Paraboloid 

The volume of the frustum between p OD=  and 
q OC=  is 

 (2 2

2

q q

p p

cV y dx cx dx q pππ π= = = −∫ ∫ )2  (31) 

The volume of this frustum using the Prismoidal 
formula [equation (1)] where 2

1 1A y cpπ π= = , 
2

2 2A y cqπ π= =  and 

( )24 4m m 4 2
2

p qA y c cπ+⎛ ⎞ p qπ π= = =⎜ ⎟
⎝ ⎠

+  is 

 

( )

( ) ( )

( )

1 2

2 2

4
6

3 3
6

2

P m
LV A A A

q p
c p q

c q p

π

π

= + +

−
= +

= −  (32) 

And PV V=  as Simpson (1743) proved.  We may write 
this equivalence PV V=  as Simpson’s rule 

( ) ( ) ( )4
6 2

q

p

q p p qf x dx f p f f q C− ⎛ + ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ + (33) 

where C is a constant and the integral on the left-hand-
side of equation (33) is the volume generated by 
revolving the curve ( )y f x=  about the x-axis between 
the lines   and x p x q p= = > . 
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It is known that  if 0C = ( )f x

y cx

 are polynomials of 
degree ; i.e., linear, quadratic or cubic functions 
having the general forms: 

3≤
d= +

)

,  
and  respectively (Apostol 1969).  
For any other function 

2y bx cx d= + +
3 2bxy ax= + cx+ + d

(f x  on the left-hand-side of 
equation (33), C will not equal 0 on the right-hand-side, 
and so can be regarded as a correction to the volume 
computed by the Prismoidal formula to obtain the 
correct volume. 

This explains why the volumes of certain solids of 
revolution can be correctly evaluated by using the 
Prismoidal formula and others cannot.  For example:  

(a) Frustum of a paraboloid formed by rotating the 
parabola y cx=  about its axis of symmetry. 

  and ( )2
q q

p p

V y dx f x dxπ= =∫ ∫ ( )f x cxπ=  is a 

linear function.  And so the Prismoidal formula 
will give the correct volume. 

(b) Barrel formed from the middle frustum of a 
parabolic spindle (see Figure 10) where the 

equation of the parabola is 2
2

b ay b x
l
−

= −   [see 

equation (22)] and  

and 

( )2

0 0

2 2
l l

V y dx f x dxπ= =∫ ∫
( )( ) ( )2

4 2
4 2

2 b b a 2b a
f x x x

l l
π π

bπ
− −

= − +  

which is a polynomial in x of degree >3.  And so 
the Prismoidal formula will not give the correct 
volume as is demonstrated by equation (24). 

(c) Barrel formed from the middle frustum of a 
circular spindle (see Figure 10) where the 
equation of the circular arc is 

2 2

2
Wy P x
U

= − −   [see equation (26)] and 

 .  With equation ( )2

0 0

2 2
l l

V y dx f x dxπ= =∫ ∫

( )

(27)

2
2 1PW xf x Q x

U P
π
⎛ ⎛ ⎞⎜= − − − ⎜ ⎟⎜ ⎝ ⎠⎝

⎞
⎟
⎟
⎠

 

 and, using the binomial series 

 

2 2

4

1 1 1 31 1
2 2 4 2 4 6

1 3 5
2 4 6 8

 Thus ( )f x  will be a polynomial in x of degree 
>3.  And so the Prismoidal formula will not give 
the exact volume. 

Now, imagine the parabolic barrel of Figure 10 trimmed 
of its sides and bottom leaving a solid that could be 
likened to a loaf of bread – a square prism topped with a 
paraboloidal cap.  The volume of this solid will be some 
portion of the original barrel, and noting (b) above, we 
may express the volume of the loaf of bread as 

 where B will be less 

than one and 

( )2

0 0

2 2
l l

V B y dx B f x dπ= =∫ ∫ x

( )f x  remains unaltered; a polynomial in 
x of degree >3.  Hence the Prismoidal formula will not 
give the correct volume of the loaf of bread. 

We can use these examples of solids of revolution, or 
portions thereof, in support of a statement:   

Beware of using the Prismoidal formula 
for estimating the volume of solids having 
curved faces; the volume may not be 
correct. 

Prismoidal formula and Finite-Element volumes 

Davis (1994) introduces the Finite-Element-Volume 
method of computing earthwork volumes.  The method 
is designed to overcome the limitations of computing 
volumes by the End-Area formula and can be applied to 
straight or curved road alignments.  For the purposes of 
numerical comparison of finite-element volumes of 
certain alignments (with triangular cross-sections) with 
those obtained by conventional methods he gives a 
general curvilinear volume formula as 

  (34) ( )
0 0 0

1
L L L

V A ek dx A dx Aek dx= + = +∫ ∫ ∫

3x x x
P P P

x
P

⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⋅ ⋅ ⎛ ⎞− −⎜ ⎟⋅ ⋅ ⋅ ⎝ ⎠

A is the cross-sectional area of a differential element of 
volume, e is the eccentricity of the centroid of the cross-
section, i.e., the distance from the curved centreline to 
the centroid and k is the curvature of the centreline.  A, 
e and k are functions of the centreline length x and 
Davis (ibid.) defines the second term on the right-hand 
side of (34) as a prismoidal curvature correction  
where the term “prismoidal” relates to the fact that the 
stated formula for  are Simpson’s rule 

approximations of  the integral 

CV

CV

0

L

Aek dx∫ .  The 

definition of prismoidal correction that we use in this 
paper is different [see equation (4)].   

x
P  

Davis (ibid.) does not use a “prismoidal correction” in 
the computation of finite-element volumes – which can 
be outlined in the following way. 

 9



 

The length x of the solid section is divided into n small 
slices, each of width xδ , and with the j-th slice having 
cross-sectional area jA .  The finite-element volume is 
then 

 
1

n

FE j
j

V A xδ
=

= ∑  (35) 

In the limit as n  and →∞ 0xδ → , FEV  approaches the 
“true” volume V.   

For curved alignments the section length is adjusted to 
equal the path length of the centroids of the cross-
sections.  And where the plane end-faces of the section 
have different numbers of vertices; then certain rules for 
“tapering” are adopted. 

Interestingly, if this method is used to compute the 
volume of the prismoid shown in Figure 3, the resulting 
volume would be an estimate of a volume of a solid 
having a curved upper-face as shown in Figure 12. 

 

A1

A2

Aj

x
δx

 
Figure 12:  Finite-element volume 

Pyramid frustum formula 

 
O

A

B C

D

E F

h

h1

h2

A1

A2

 
Figure 13:  Frustum of a triangular pyramid 

For earthwork volume computations where cross-
sections change from cut to fill, or vice versa, some 
authors, e.g., Easa 1991, Moffitt and Boucher 1987, 
suggest that volumes of these “transition areas” can be 
more accurately estimated by the Pyramid Frustum 
formula rather than the End-Area formula.   

The Pyramid Frustum volume formula can be derived in 
the following manner.  From similar triangles (end-
faces and side-faces of Figure 13) the following ratios 
may be obtained 

 1

2

h AB BC CA
h DE EF FD

= = =  (36) 

and 

 
( )
( )

( )
( )

( )
( )

2 2
1

2 2
2

2

2

AB BC CAA
A DE EF FD

= = =  (37) 

From equations (36) and (37) we obtain 

 1 1 2

2 2 22

1
A h h h h

h h hA
+

= = = +  

which can be manipulated to yield 

 1 2 22

1 2

A A Ah
h A A

+
=

−
 (38) 

Now the volume of the frustum ABCDEF of Figure 13 
is the difference of the two pyramids OABC and ODEF, 
or 

 

( )

( )

1 1
1 2 23 3

2
1 1 23

PFV A h h A h

hh A A A
h

= + −

⎛= + −⎜
⎝ ⎠

2

⎞
⎟  (39) 

And substituting equation (38) into equation (39) gives 
the Pyramid Frustum volume formula 

 ( 1 1 2 23PF
hV A A A= + + )A  (40) 

Whilst this formula has been developed for the frustum 
of a triangular pyramid it is applicable to frustums of 
other pyramids, since they could all be decomposed into 
frustums of triangular pyramids, each having a common 
edge which could be expended to the apex of the 
pyramid.   

The volumes shown in Table 7 indicate that the 
Pyramid Frustum formula is no better than the End-
Area formula in estimating volumes of the prismoids of 
Figures 2 to 5. 
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Moffit, F. H. and Bouchard, H., (1987).  Surveying, 
Harper and Row, New York. 

 
Areas m2 Volumes m3 Prismoid 

1A  mA  2A  PV  EAV  PFV  Newman, James R., (1956).  The World of Mathematics, 
Vol. 1, Simon & Schuster, New York. Figure 2 6 50 50 49.67 5.0 4 

Figure 3 8 6.5 4 1
363  60 58.86 

Figure 4 2 2.5 4 2
326  30 29.43 

Figure 5 3 3.0 2 1
328  25 24.83 

 

Schofield, W., (2002).  Engineering Surveying, 5th Ed., 
Butterworth-Heinemann, London. 

Shepherd, F. A., (1983).  Engineering Surveying – 
problems and solutions, 2nd Ed., Edward Arnold, 
London. Table 7:  Volumes of prismoids 

Conclusion 

, we have provided a verification of the 

seful information regarding the 

ine of the finite-
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